From 754bbf7a25a8dda49b5d08ef0d0443bbf5af0e36 Mon Sep 17 00:00:00 2001 From: Craig Jennings Date: Sun, 7 Apr 2024 13:41:34 -0500 Subject: new repository --- devdocs/c/numeric%2Fmath%2Fhypot.html | 81 +++++++++++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 devdocs/c/numeric%2Fmath%2Fhypot.html (limited to 'devdocs/c/numeric%2Fmath%2Fhypot.html') diff --git a/devdocs/c/numeric%2Fmath%2Fhypot.html b/devdocs/c/numeric%2Fmath%2Fhypot.html new file mode 100644 index 00000000..bd94e763 --- /dev/null +++ b/devdocs/c/numeric%2Fmath%2Fhypot.html @@ -0,0 +1,81 @@ +

hypot, hypotf, hypotl

Defined in header <math.h>
float       hypotf( float x, float y );
+
(1) (since C99)
double      hypot( double x, double y );
+
(2) (since C99)
long double hypotl( long double x, long double y );
+
(3) (since C99)
Defined in header <tgmath.h>
#define hypot( x, y )
+
(4) (since C99)
+1-3) Computes the square root of the sum of the squares of x and y, without undue overflow or underflow at intermediate stages of the computation.
+4) Type-generic macro: If any argument has type long double, the long double version of the function is called. Otherwise, if any argument has integer type or has type double, the double version of the function is called. Otherwise, the float version of the function is called.

The value computed by this function is the length of the hypotenuse of a right-angled triangle with sides of length x and y, or the distance of the point (x,y) from the origin (0,0), or the magnitude of a complex number x+iy.

+

Parameters

+ + +
x - floating point value
y - floating point value

Return value

If no errors occur, the hypotenuse of a right-angled triangle, \(\scriptsize{\sqrt{x^2+y^2} }\)x2+y2, is returned.

+

If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.

+

If a range error due to underflow occurs, the correct result (after rounding) is returned.

+

Error handling

Errors are reported as specified in math_errhandling.

+

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

+

Notes

Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.

+

hypot(x, y) is equivalent to cabs(x + I*y).

+

POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).

+

hypot(INFINITY, NAN) returns +∞, but sqrt(INFINITY*INFINITY+NAN*NAN) returns NaN.

+

Example

#include <stdio.h>
+#include <math.h>
+#include <errno.h>
+#include <fenv.h>
+#include <float.h>
+ 
+// #pragma STDC FENV_ACCESS ON
+int main(void)
+{
+    // typical usage
+    printf("(1,1) cartesian is (%f,%f) polar\n", hypot(1,1), atan2(1,1));
+    // special values
+    printf("hypot(NAN,INFINITY) = %f\n", hypot(NAN,INFINITY));
+    // error handling 
+    errno = 0; feclearexcept(FE_ALL_EXCEPT);
+    printf("hypot(DBL_MAX,DBL_MAX) = %f\n", hypot(DBL_MAX,DBL_MAX));
+    if(errno == ERANGE)         perror("    errno == ERANGE");
+    if(fetestexcept(FE_OVERFLOW)) puts("    FE_OVERFLOW raised");
+}

Possible output:

+
(1,1) cartesian is (1.414214,0.785398) polar
+hypot(NAN,INFINITY) = inf
+hypot(DBL_MAX,DBL_MAX) = inf
+    errno == ERANGE: Numerical result out of range
+    FE_OVERFLOW raised

References

See also

+ + + + +
+
(C99)(C99)
computes a number raised to the given power (\(\small{x^y}\)xy)
(function)
+
(C99)(C99)
computes square root (\(\small{\sqrt{x} }\)x)
(function)
+
(C99)(C99)(C99)
computes cube root (\(\small{\sqrt[3]{x} }\)3x)
(function)
+
(C99)(C99)(C99)
computes the magnitude of a complex number
(function)
C++ documentation for hypot
+

+ © cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
+ https://en.cppreference.com/w/c/numeric/math/hypot +

+
-- cgit v1.2.3