| _Atomic(type-name) | (1) | (since C11) | 
| _Atomictype-name | (2) | (since C11) | 
| type-name | - | any type other than array or function. For (1), type-name also cannot be atomic or cvr-qualified | 
The header <stdatomic.h> defines 37 convenience type aliases, from atomic_bool to atomic_uintmax_t, which simplify the use of this keyword with built-in and library types.
_Atomic const int * p1; // p is a pointer to an atomic const int const atomic_int * p2; // same const _Atomic(int) * p3; // same
If the macro constant __STDC_NO_ATOMICS__ is defined by the compiler, the keyword _Atomic is not provided.
Objects of atomic types are the only objects that are free from data races; that is, they may be modified by two threads concurrently or modified by one and read by another.
Each atomic object has its own associated modification order, which is a total order of modifications made to that object. If, from some thread's point of view, modification A of some atomic M happens-before modification B of the same atomic M, then in the modification order of M, A occurs before B.
Note that although each atomic object has its own modification order, there is no single total order; different threads may observe modifications to different atomic objects in different orders.
There are four coherences that are guaranteed for all atomic operations:
Some atomic operations are also synchronization operations; they may have additional release semantics, acquire semantics, or sequentially-consistent semantics. See memory_order.
Built-in increment and decrement operators and compound assignment are read-modify-write atomic operations with total sequentially consistent ordering (as if using memory_order_seq_cst). If less strict synchronization semantics are desired, the standard library functions may be used instead.
Atomic properties are only meaningful for lvalue expressions. Lvalue-to-rvalue conversion (which models a memory read from an atomic location to a CPU register) strips atomicity along with other qualifiers.
Accessing a member of an atomic struct/union is undefined behavior.
The library type sig_atomic_t does not provide inter-thread synchronization or memory ordering, only atomicity.
The volatile types do not provide inter-thread synchronization, memory ordering, or atomicity.
Implementations are recommended to ensure that the representation of _Atomic(T) in C is same as that of std::atomic<T> in C++ for every possible type T. The mechanisms used to ensure atomicity and memory ordering should be compatible.
#include <stdio.h>
#include <threads.h>
#include <stdatomic.h>
 
atomic_int acnt;
int cnt;
 
int f(void* thr_data)
{
    for(int n = 0; n < 1000; ++n) {
        ++cnt;
        ++acnt;
        // for this example, relaxed memory order is sufficient, e.g.
        // atomic_fetch_add_explicit(&acnt, 1, memory_order_relaxed);
    }
    return 0;
}
 
int main(void)
{
    thrd_t thr[10];
    for(int n = 0; n < 10; ++n)
        thrd_create(&thr[n], f, NULL);
    for(int n = 0; n < 10; ++n)
        thrd_join(thr[n], NULL);
 
    printf("The atomic counter is %u\n", acnt);
    printf("The non-atomic counter is %u\n", cnt);
}Possible output:
The atomic counter is 10000 The non-atomic counter is 8644
| C documentation for thread (Concurrency support library) | |
| C++ documentation for atomic | 
    © cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
    https://en.cppreference.com/w/c/language/atomic