Defined in header <math.h> | ||
|---|---|---|
float hypotf( float x, float y ); | (1) | (since C99) |
double hypot( double x, double y ); | (2) | (since C99) |
long double hypotl( long double x, long double y ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define hypot( x, y ) | (4) | (since C99) |
x and y, without undue overflow or underflow at intermediate stages of the computation.long double, the long double version of the function is called. Otherwise, if any argument has integer type or has type double, the double version of the function is called. Otherwise, the float version of the function is called.The value computed by this function is the length of the hypotenuse of a right-angled triangle with sides of length x and y, or the distance of the point (x,y) from the origin (0,0), or the magnitude of a complex number x+iy.
| x | - | floating point value |
| y | - | floating point value |
If no errors occur, the hypotenuse of a right-angled triangle, \(\scriptsize{\sqrt{x^2+y^2} }\)√x2+y2, is returned.
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
hypot(x, y), hypot(y, x), and hypot(x, -y) are equivalent hypot is equivalent to fabs called with the non-zero argument hypot returns +∞ even if the other argument is NaN Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.
hypot(x, y) is equivalent to cabs(x + I*y).
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
hypot(INFINITY, NAN) returns +∞, but sqrt(INFINITY*INFINITY+NAN*NAN) returns NaN.
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include <fenv.h>
#include <float.h>
// #pragma STDC FENV_ACCESS ON
int main(void)
{
// typical usage
printf("(1,1) cartesian is (%f,%f) polar\n", hypot(1,1), atan2(1,1));
// special values
printf("hypot(NAN,INFINITY) = %f\n", hypot(NAN,INFINITY));
// error handling
errno = 0; feclearexcept(FE_ALL_EXCEPT);
printf("hypot(DBL_MAX,DBL_MAX) = %f\n", hypot(DBL_MAX,DBL_MAX));
if(errno == ERANGE) perror(" errno == ERANGE");
if(fetestexcept(FE_OVERFLOW)) puts(" FE_OVERFLOW raised");
}Possible output:
(1,1) cartesian is (1.414214,0.785398) polar
hypot(NAN,INFINITY) = inf
hypot(DBL_MAX,DBL_MAX) = inf
errno == ERANGE: Numerical result out of range
FE_OVERFLOW raised|
(C99)(C99) | computes a number raised to the given power (\(\small{x^y}\)xy) (function) |
|
(C99)(C99) | computes square root (\(\small{\sqrt{x} }\)√x) (function) |
|
(C99)(C99)(C99) | computes cube root (\(\small{\sqrt[3]{x} }\)3√x) (function) |
|
(C99)(C99)(C99) | computes the magnitude of a complex number (function) |
C++ documentation for hypot |
|
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/c/numeric/math/hypot