Defined in header <math.h> | ||
|---|---|---|
float log1pf( float arg ); | (1) | (since C99) |
double log1p( double arg ); | (2) | (since C99) |
long double log1pl( long double arg ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define log1p( arg ) | (4) | (since C99) |
e) logarithm of 1+arg. This function is more precise than the expression log(1+arg) if arg is close to zero.arg has type long double, log1pl is called. Otherwise, if arg has integer type or the type double, log1p is called. Otherwise, log1pf is called.| arg | - | floating point value |
If no errors occur ln(1+arg) is returned.
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a pole error occurs, -HUGE_VAL, -HUGE_VALF, or -HUGE_VALL is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling.
Domain error occurs if arg is less than -1.
Pole error may occur if arg is -1.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
FE_DIVBYZERO is raised. FE_INVALID is raised. The functions expm1 and log1p are useful for financial calculations, for example, when calculating small daily interest rates: (1+x)n-1 can be expressed as expm1(n * log1p(x)). These functions also simplify writing accurate inverse hyperbolic functions.
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <errno.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
int main(void)
{
printf("log1p(0) = %f\n", log1p(0));
printf("Interest earned in 2 days on $100, compounded daily at 1%%\n"
" on a 30/360 calendar = %f\n",
100*expm1(2*log1p(0.01/360)));
printf("log(1+1e-16) = %g, but log1p(1e-16) = %g\n",
log(1+1e-16), log1p(1e-16));
// special values
printf("log1p(-0) = %f\n", log1p(-0.0));
printf("log1p(+Inf) = %f\n", log1p(INFINITY));
//error handling
errno = 0; feclearexcept(FE_ALL_EXCEPT);
printf("log1p(-1) = %f\n", log1p(-1));
if(errno == ERANGE) perror(" errno == ERANGE");
if(fetestexcept(FE_DIVBYZERO)) puts(" FE_DIVBYZERO raised");
}Possible output:
log1p(0) = 0.000000
Interest earned in 2 days on $100, compounded daily at 1%
on a 30/360 calendar = 0.005556
log(1+1e-16) = 0, but log1p(1e-16) = 1e-16
log1p(-0) = -0.000000
log1p(+Inf) = Inf
log1p(-1) = -Inf
errno == ERANGE: Result too large
FE_DIVBYZERO raised|
(C99)(C99) | computes natural (base-e) logarithm (\({\small \ln{x} }\)ln(x)) (function) |
|
(C99)(C99) | computes common (base-10) logarithm (\({\small \log_{10}{x} }\)log10(x)) (function) |
|
(C99)(C99)(C99) | computes base-2 logarithm (\({\small \log_{2}{x} }\)log2(x)) (function) |
|
(C99)(C99)(C99) | computes e raised to the given power, minus one (\({\small e^x-1}\)ex-1) (function) |
C++ documentation for log1p |
|
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/c/numeric/math/log1p