summaryrefslogtreecommitdiff
path: root/devdocs/python~3.12/library%2Ftokenize.html
blob: 49d8fb1046e0d425aa7e8f260b58f3b2dbd864ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
 <span id="tokenize-tokenizer-for-python-source"></span><h1>tokenize — Tokenizer for Python source</h1> <p><strong>Source code:</strong> <a class="reference external" href="https://github.com/python/cpython/tree/3.12/Lib/tokenize.py">Lib/tokenize.py</a></p>  <p>The <a class="reference internal" href="#module-tokenize" title="tokenize: Lexical scanner for Python source code."><code>tokenize</code></a> module provides a lexical scanner for Python source code, implemented in Python. The scanner in this module returns comments as tokens as well, making it useful for implementing “pretty-printers”, including colorizers for on-screen displays.</p> <p>To simplify token stream handling, all <a class="reference internal" href="../reference/lexical_analysis#operators"><span class="std std-ref">operator</span></a> and <a class="reference internal" href="../reference/lexical_analysis#delimiters"><span class="std std-ref">delimiter</span></a> tokens and <a class="reference internal" href="constants#Ellipsis" title="Ellipsis"><code>Ellipsis</code></a> are returned using the generic <a class="reference internal" href="token#token.OP" title="token.OP"><code>OP</code></a> token type. The exact type can be determined by checking the <code>exact_type</code> property on the <a class="reference internal" href="../glossary#term-named-tuple"><span class="xref std std-term">named tuple</span></a> returned from <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize.tokenize()</code></a>.</p> <div class="admonition warning"> <p class="admonition-title">Warning</p> <p>Note that the functions in this module are only designed to parse syntactically valid Python code (code that does not raise when parsed using <a class="reference internal" href="ast#ast.parse" title="ast.parse"><code>ast.parse()</code></a>). The behavior of the functions in this module is <strong>undefined</strong> when providing invalid Python code and it can change at any point.</p> </div> <section id="tokenizing-input"> <h2>Tokenizing Input</h2> <p>The primary entry point is a <a class="reference internal" href="../glossary#term-generator"><span class="xref std std-term">generator</span></a>:</p> <dl class="py function"> <dt class="sig sig-object py" id="tokenize.tokenize">
<code>tokenize.tokenize(readline)</code> </dt> <dd>
<p>The <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a> generator requires one argument, <em>readline</em>, which must be a callable object which provides the same interface as the <a class="reference internal" href="io#io.IOBase.readline" title="io.IOBase.readline"><code>io.IOBase.readline()</code></a> method of file objects. Each call to the function should return one line of input as bytes.</p> <p>The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple <code>(srow, scol)</code> of ints specifying the row and column where the token begins in the source; a 2-tuple <code>(erow, ecol)</code> of ints specifying the row and column where the token ends in the source; and the line on which the token was found. The line passed (the last tuple item) is the <em>physical</em> line. The 5 tuple is returned as a <a class="reference internal" href="../glossary#term-named-tuple"><span class="xref std std-term">named tuple</span></a> with the field names: <code>type string start end line</code>.</p> <p>The returned <a class="reference internal" href="../glossary#term-named-tuple"><span class="xref std std-term">named tuple</span></a> has an additional property named <code>exact_type</code> that contains the exact operator type for <a class="reference internal" href="token#token.OP" title="token.OP"><code>OP</code></a> tokens. For all other token types <code>exact_type</code> equals the named tuple <code>type</code> field.</p> <div class="versionchanged"> <p><span class="versionmodified changed">Changed in version 3.1: </span>Added support for named tuples.</p> </div> <div class="versionchanged"> <p><span class="versionmodified changed">Changed in version 3.3: </span>Added support for <code>exact_type</code>.</p> </div> <p><a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a> determines the source encoding of the file by looking for a UTF-8 BOM or encoding cookie, according to <span class="target" id="index-0"></span><a class="pep reference external" href="https://peps.python.org/pep-0263/"><strong>PEP 263</strong></a>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="tokenize.generate_tokens">
<code>tokenize.generate_tokens(readline)</code> </dt> <dd>
<p>Tokenize a source reading unicode strings instead of bytes.</p> <p>Like <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a>, the <em>readline</em> argument is a callable returning a single line of input. However, <a class="reference internal" href="#tokenize.generate_tokens" title="tokenize.generate_tokens"><code>generate_tokens()</code></a> expects <em>readline</em> to return a str object rather than bytes.</p> <p>The result is an iterator yielding named tuples, exactly like <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a>. It does not yield an <a class="reference internal" href="token#token.ENCODING" title="token.ENCODING"><code>ENCODING</code></a> token.</p> </dd>
</dl> <p>All constants from the <a class="reference internal" href="token#module-token" title="token: Constants representing terminal nodes of the parse tree."><code>token</code></a> module are also exported from <a class="reference internal" href="#module-tokenize" title="tokenize: Lexical scanner for Python source code."><code>tokenize</code></a>.</p> <p>Another function is provided to reverse the tokenization process. This is useful for creating tools that tokenize a script, modify the token stream, and write back the modified script.</p> <dl class="py function"> <dt class="sig sig-object py" id="tokenize.untokenize">
<code>tokenize.untokenize(iterable)</code> </dt> <dd>
<p>Converts tokens back into Python source code. The <em>iterable</em> must return sequences with at least two elements, the token type and the token string. Any additional sequence elements are ignored.</p> <p>The reconstructed script is returned as a single string. The result is guaranteed to tokenize back to match the input so that the conversion is lossless and round-trips are assured. The guarantee applies only to the token type and token string as the spacing between tokens (column positions) may change.</p> <p>It returns bytes, encoded using the <a class="reference internal" href="token#token.ENCODING" title="token.ENCODING"><code>ENCODING</code></a> token, which is the first token sequence output by <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a>. If there is no encoding token in the input, it returns a str instead.</p> </dd>
</dl> <p><a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a> needs to detect the encoding of source files it tokenizes. The function it uses to do this is available:</p> <dl class="py function"> <dt class="sig sig-object py" id="tokenize.detect_encoding">
<code>tokenize.detect_encoding(readline)</code> </dt> <dd>
<p>The <a class="reference internal" href="#tokenize.detect_encoding" title="tokenize.detect_encoding"><code>detect_encoding()</code></a> function is used to detect the encoding that should be used to decode a Python source file. It requires one argument, readline, in the same way as the <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a> generator.</p> <p>It will call readline a maximum of twice, and return the encoding used (as a string) and a list of any lines (not decoded from bytes) it has read in.</p> <p>It detects the encoding from the presence of a UTF-8 BOM or an encoding cookie as specified in <span class="target" id="index-1"></span><a class="pep reference external" href="https://peps.python.org/pep-0263/"><strong>PEP 263</strong></a>. If both a BOM and a cookie are present, but disagree, a <a class="reference internal" href="exceptions#SyntaxError" title="SyntaxError"><code>SyntaxError</code></a> will be raised. Note that if the BOM is found, <code>'utf-8-sig'</code> will be returned as an encoding.</p> <p>If no encoding is specified, then the default of <code>'utf-8'</code> will be returned.</p> <p>Use <a class="reference internal" href="#tokenize.open" title="tokenize.open"><code>open()</code></a> to open Python source files: it uses <a class="reference internal" href="#tokenize.detect_encoding" title="tokenize.detect_encoding"><code>detect_encoding()</code></a> to detect the file encoding.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="tokenize.open">
<code>tokenize.open(filename)</code> </dt> <dd>
<p>Open a file in read only mode using the encoding detected by <a class="reference internal" href="#tokenize.detect_encoding" title="tokenize.detect_encoding"><code>detect_encoding()</code></a>.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 3.2.</span></p> </div> </dd>
</dl> <dl class="py exception"> <dt class="sig sig-object py" id="tokenize.TokenError">
<code>exception tokenize.TokenError</code> </dt> <dd>
<p>Raised when either a docstring or expression that may be split over several lines is not completed anywhere in the file, for example:</p> <pre data-language="python">"""Beginning of
docstring
</pre> <p>or:</p> <pre data-language="python">[1,
 2,
 3
</pre> </dd>
</dl> </section> <section id="command-line-usage"> <span id="tokenize-cli"></span><h2>Command-Line Usage</h2> <div class="versionadded"> <p><span class="versionmodified added">New in version 3.3.</span></p> </div> <p>The <a class="reference internal" href="#module-tokenize" title="tokenize: Lexical scanner for Python source code."><code>tokenize</code></a> module can be executed as a script from the command line. It is as simple as:</p> <pre data-language="sh">python -m tokenize [-e] [filename.py]
</pre> <p>The following options are accepted:</p> <dl class="std option"> <dt class="sig sig-object std" id="cmdoption-tokenize-h">
<code>-h, --help</code> </dt> <dd>
<p>show this help message and exit</p> </dd>
</dl> <dl class="std option"> <dt class="sig sig-object std" id="cmdoption-tokenize-e">
<code>-e, --exact</code> </dt> <dd>
<p>display token names using the exact type</p> </dd>
</dl> <p>If <code>filename.py</code> is specified its contents are tokenized to stdout. Otherwise, tokenization is performed on stdin.</p> </section> <section id="examples"> <h2>Examples</h2> <p>Example of a script rewriter that transforms float literals into Decimal objects:</p> <pre data-language="python">from tokenize import tokenize, untokenize, NUMBER, STRING, NAME, OP
from io import BytesIO

def decistmt(s):
    """Substitute Decimals for floats in a string of statements.

    &gt;&gt;&gt; from decimal import Decimal
    &gt;&gt;&gt; s = 'print(+21.3e-5*-.1234/81.7)'
    &gt;&gt;&gt; decistmt(s)
    "print (+Decimal ('21.3e-5')*-Decimal ('.1234')/Decimal ('81.7'))"

    The format of the exponent is inherited from the platform C library.
    Known cases are "e-007" (Windows) and "e-07" (not Windows).  Since
    we're only showing 12 digits, and the 13th isn't close to 5, the
    rest of the output should be platform-independent.

    &gt;&gt;&gt; exec(s)  #doctest: +ELLIPSIS
    -3.21716034272e-0...7

    Output from calculations with Decimal should be identical across all
    platforms.

    &gt;&gt;&gt; exec(decistmt(s))
    -3.217160342717258261933904529E-7
    """
    result = []
    g = tokenize(BytesIO(s.encode('utf-8')).readline)  # tokenize the string
    for toknum, tokval, _, _, _ in g:
        if toknum == NUMBER and '.' in tokval:  # replace NUMBER tokens
            result.extend([
                (NAME, 'Decimal'),
                (OP, '('),
                (STRING, repr(tokval)),
                (OP, ')')
            ])
        else:
            result.append((toknum, tokval))
    return untokenize(result).decode('utf-8')
</pre> <p>Example of tokenizing from the command line. The script:</p> <pre data-language="python">def say_hello():
    print("Hello, World!")

say_hello()
</pre> <p>will be tokenized to the following output where the first column is the range of the line/column coordinates where the token is found, the second column is the name of the token, and the final column is the value of the token (if any)</p> <pre data-language="shell">$ python -m tokenize hello.py
0,0-0,0:            ENCODING       'utf-8'
1,0-1,3:            NAME           'def'
1,4-1,13:           NAME           'say_hello'
1,13-1,14:          OP             '('
1,14-1,15:          OP             ')'
1,15-1,16:          OP             ':'
1,16-1,17:          NEWLINE        '\n'
2,0-2,4:            INDENT         '    '
2,4-2,9:            NAME           'print'
2,9-2,10:           OP             '('
2,10-2,25:          STRING         '"Hello, World!"'
2,25-2,26:          OP             ')'
2,26-2,27:          NEWLINE        '\n'
3,0-3,1:            NL             '\n'
4,0-4,0:            DEDENT         ''
4,0-4,9:            NAME           'say_hello'
4,9-4,10:           OP             '('
4,10-4,11:          OP             ')'
4,11-4,12:          NEWLINE        '\n'
5,0-5,0:            ENDMARKER      ''
</pre> <p>The exact token type names can be displayed using the <a class="reference internal" href="#cmdoption-tokenize-e"><code>-e</code></a> option:</p> <pre data-language="shell">$ python -m tokenize -e hello.py
0,0-0,0:            ENCODING       'utf-8'
1,0-1,3:            NAME           'def'
1,4-1,13:           NAME           'say_hello'
1,13-1,14:          LPAR           '('
1,14-1,15:          RPAR           ')'
1,15-1,16:          COLON          ':'
1,16-1,17:          NEWLINE        '\n'
2,0-2,4:            INDENT         '    '
2,4-2,9:            NAME           'print'
2,9-2,10:           LPAR           '('
2,10-2,25:          STRING         '"Hello, World!"'
2,25-2,26:          RPAR           ')'
2,26-2,27:          NEWLINE        '\n'
3,0-3,1:            NL             '\n'
4,0-4,0:            DEDENT         ''
4,0-4,9:            NAME           'say_hello'
4,9-4,10:           LPAR           '('
4,10-4,11:          RPAR           ')'
4,11-4,12:          NEWLINE        '\n'
5,0-5,0:            ENDMARKER      ''
</pre> <p>Example of tokenizing a file programmatically, reading unicode strings instead of bytes with <a class="reference internal" href="#tokenize.generate_tokens" title="tokenize.generate_tokens"><code>generate_tokens()</code></a>:</p> <pre data-language="python">import tokenize

with tokenize.open('hello.py') as f:
    tokens = tokenize.generate_tokens(f.readline)
    for token in tokens:
        print(token)
</pre> <p>Or reading bytes directly with <a class="reference internal" href="#tokenize.tokenize" title="tokenize.tokenize"><code>tokenize()</code></a>:</p> <pre data-language="python">import tokenize

with open('hello.py', 'rb') as f:
    tokens = tokenize.tokenize(f.readline)
    for token in tokens:
        print(token)
</pre> </section> <div class="_attribution">
  <p class="_attribution-p">
    &copy; 2001&ndash;2023 Python Software Foundation<br>Licensed under the PSF License.<br>
    <a href="https://docs.python.org/3.12/library/tokenize.html" class="_attribution-link">https://docs.python.org/3.12/library/tokenize.html</a>
  </p>
</div>