diff options
Diffstat (limited to 'devdocs/c/numeric%2Fmath%2Fatan2.html')
| -rw-r--r-- | devdocs/c/numeric%2Fmath%2Fatan2.html | 103 |
1 files changed, 103 insertions, 0 deletions
diff --git a/devdocs/c/numeric%2Fmath%2Fatan2.html b/devdocs/c/numeric%2Fmath%2Fatan2.html new file mode 100644 index 00000000..94dcdd22 --- /dev/null +++ b/devdocs/c/numeric%2Fmath%2Fatan2.html @@ -0,0 +1,103 @@ + <h1 id="firstHeading" class="firstHeading">atan2, atan2f, atan2l</h1> <table class="t-dcl-begin"> <tr class="t-dsc-header"> <th> Defined in header <code><math.h></code> </th> <th> </th> <th> </th> </tr> <tr class="t-dcl t-since-c99"> <td> <pre data-language="c">float atan2f( float y, float x );</pre> +</td> <td> (1) </td> <td> <span class="t-mark-rev t-since-c99">(since C99)</span> </td> </tr> <tr class="t-dcl"> <td> <pre data-language="c">double atan2( double y, double x );</pre> +</td> <td> (2) </td> <td class="t-dcl-nopad"> </td> </tr> <tr class="t-dcl t-since-c99"> <td> <pre data-language="c">long double atan2l( long double y, long double x );</pre> +</td> <td> (3) </td> <td> <span class="t-mark-rev t-since-c99">(since C99)</span> </td> </tr> <tr class="t-dcl t-since-c23"> <td> <pre data-language="c">_Decimal32 atan2d32( _Decimal32 y, _Decimal32 x );</pre> +</td> <td> (4) </td> <td> <span class="t-mark-rev t-since-c23">(since C23)</span> </td> </tr> <tr class="t-dcl t-since-c23"> <td> <pre data-language="c">_Decimal64 atan2d64( _Decimal64 y, _Decimal64 x );</pre> +</td> <td> (5) </td> <td> <span class="t-mark-rev t-since-c23">(since C23)</span> </td> </tr> <tr class="t-dcl t-since-c23"> <td> <pre data-language="c">_Decimal128 atan2d128( _Decimal128 y, _Decimal128 x );</pre> +</td> <td> (6) </td> <td> <span class="t-mark-rev t-since-c23">(since C23)</span> </td> </tr> <tr class="t-dsc-header"> <th> Defined in header <code><tgmath.h></code> </th> <th> </th> <th> </th> </tr> <tr class="t-dcl t-since-c99"> <td> <pre data-language="c">#define atan2( y, x )</pre> +</td> <td> (7) </td> <td> <span class="t-mark-rev t-since-c99">(since C99)</span> </td> </tr> </table> <div class="t-li1"> +<span class="t-li">1-6)</span> Computes the arc tangent of <code>y / x</code> using the signs of arguments to determine the correct quadrant.</div> <div class="t-li1"> +<span class="t-li">7)</span> Type-generic macro: If any argument has type <code>long double</code>, <span class="t-v">(3)</span> (<code>atan2l</code>) is called. Otherwise, if any argument has integer type or has type <code>double</code>, <span class="t-v">(2)</span> (<code>atan2</code>) is called. Otherwise, <span class="t-v">(1)</span> (<code>atan2f</code>) is called.</div> <table class="t-rev-begin"> <tr class="t-rev t-since-c23"> +<td> <p>The functions <span class="t-v">(4-6)</span> are declared if and only if the implementation predefines <code>__STDC_IEC_60559_DFP__</code> (i.e. the implementation supports decimal floating-point numbers).</p> +</td> <td><span class="t-mark-rev t-since-c23">(since C23)</span></td> +</tr> </table> <h3 id="Parameters"> Parameters</h3> <table class="t-par-begin"> <tr class="t-par"> <td> x, y </td> <td> - </td> <td> floating-point value </td> +</tr> +</table> <h3 id="Return_value"> Return value</h3> If no errors occur, the arc tangent of <code>y / x</code> (arctan(<span><span>y</span><span>/</span><span>x</span></span>)) in the range [-π ; +π] radians, is returned. <div class="t-plot"> <div class="t-plot-left">Y argument</div> <div class="t-plot-right">Return value</div> <div class="t-plot-image-left-right"><a href="https://en.cppreference.com/w/File:math-atan2.png" class="image"><img alt="math-atan2.png" src="" width="285" height="240" srcset="https://upload.cppreference.com/mwiki/images/thumb/9/91/math-atan2.png/428px-math-atan2.png 1.5x, https://upload.cppreference.com/mwiki/images/thumb/9/91/math-atan2.png/570px-math-atan2.png 2x"></a></div> <div class="t-plot-bottom">X argument</div> </div> <p>If a domain error occurs, an implementation-defined value is returned.</p> +<p>If a range error occurs due to underflow, the correct result (after rounding) is returned.</p> +<h3 id="Error_handling"> Error handling</h3> <p>Errors are reported as specified in <a href="math_errhandling" title="c/numeric/math/math errhandling"><code>math_errhandling</code></a>.</p> +<p>Domain error may occur if <code>x</code> and <code>y</code> are both zero.</p> +<p>If the implementation supports IEEE floating-point arithmetic (IEC 60559):</p> +<ul> +<li> If <code>x</code> and <code>y</code> are both zero, domain error <i>does not</i> occur; </li> +<li> If <code>x</code> and <code>y</code> are both zero, range error does not occur either; </li> +<li> If <code>y</code> is zero, pole error does not occur; </li> +<li> If <code>y</code> is <code>±0</code> and <code>x</code> is negative or <code>-0</code>, <code>±π</code> is returned; </li> +<li> If <code>y</code> is <code>±0</code> and <code>x</code> is positive or <code>+0</code>, <code>±0</code> is returned; </li> +<li> If <code>y</code> is <code>±∞</code> and <code>x</code> is finite, <code>±π/2</code> is returned; </li> +<li> If <code>y</code> is <code>±∞</code> and <code>x</code> is <code>-∞</code>, <code>±3π/4</code> is returned; </li> +<li> If <code>y</code> is <code>±∞</code> and <code>x</code> is <code>+∞</code>, <code>±π/4</code> is returned; </li> +<li> If <code>x</code> is <code>±0</code> and <code>y</code> is negative, <code>-π/2</code> is returned; </li> +<li> If <code>x</code> is <code>±0</code> and <code>y</code> is positive, <code>+π/2</code> is returned; </li> +<li> If <code>x</code> is <code>-∞</code> and <code>y</code> is finite and positive, <code>+π</code> is returned; </li> +<li> If <code>x</code> is <code>-∞</code> and <code>y</code> is finite and negative, <code>-π</code> is returned; </li> +<li> If <code>x</code> is <code>+∞</code> and <code>y</code> is finite and positive, <code>+0</code> is returned; </li> +<li> If <code>x</code> is <code>+∞</code> and <code>y</code> is finite and negative, <code>-0</code> is returned; </li> +<li> If either <code>x</code> is NaN or <code>y</code> is NaN, NaN is returned. </li> +</ul> <h3 id="Notes"> Notes</h3> <p><code>atan2(y, x)</code> is equivalent to <code><a href="http://en.cppreference.com/w/c/numeric/complex/carg"><span class="kw756">carg</span></a><span class="br0">(</span>x <span class="sy2">+</span> I<span class="sy2">*</span>y<span class="br0">)</span></code>.</p> +<p><a rel="nofollow" class="external text" href="https://pubs.opengroup.org/onlinepubs/9699919799/functions/atan2.html">POSIX specifies</a> that in case of underflow, <code>y / x</code> is the value returned, and if that is not supported, an implementation-defined value no greater than <code><a href="../../types/limits" title="c/types/limits">DBL_MIN</a></code>, <code><a href="../../types/limits" title="c/types/limits">FLT_MIN</a></code>, and <code><a href="../../types/limits" title="c/types/limits">LDBL_MIN</a></code> is returned.</p> +<h3 id="Example"> Example</h3> <div class="t-example"> <div class="c source-c"><pre data-language="c">#include <math.h> +#include <stdio.h> + +int main(void) +{ + // normal usage: the signs of the two arguments determine the quadrant + // atan2(1,1) = +pi/4, Quad I + printf("(+1,+1) cartesian is (%f,%f) polar\n", hypot( 1, 1), atan2( 1, 1)); + // atan2(1, -1) = +3pi/4, Quad II + printf("(+1,-1) cartesian is (%f,%f) polar\n", hypot( 1,-1), atan2( 1,-1)); + // atan2(-1,-1) = -3pi/4, Quad III + printf("(-1,-1) cartesian is (%f,%f) polar\n", hypot(-1,-1), atan2(-1,-1)); + // atan2(-1,-1) = -pi/4, Quad IV + printf("(-1,+1) cartesian is (%f,%f) polar\n", hypot(-1, 1), atan2(-1, 1)); + + // special values + printf("atan2(0, 0) = %f atan2(0, -0)=%f\n", atan2(0,0), atan2(0,-0.0)); + printf("atan2(7, 0) = %f atan2(7, -0)=%f\n", atan2(7,0), atan2(7,-0.0)); +}</pre></div> <p>Output:</p> +<div class="text source-text"><pre data-language="c">(+1,+1) cartesian is (1.414214,0.785398) polar +(+1,-1) cartesian is (1.414214,2.356194) polar +(-1,-1) cartesian is (1.414214,-2.356194) polar +(-1,+1) cartesian is (1.414214,-0.785398) polar +atan2(0, 0) = 0.000000 atan2(0, -0)=3.141593 +atan2(7, 0) = 1.570796 atan2(7, -0)=1.570796</pre></div> </div> <h3 id="References"> References</h3> <ul> +<li> C23 standard (ISO/IEC 9899:2023): </li> +<ul> +<li> 7.12.4.4 The atan2 functions (p: TBD) </li> +<li> 7.25 Type-generic math <tgmath.h> (p: TBD) </li> +<li> F.10.1.4 The atan2 functions (p: TBD) </li> +</ul> +<li> C17 standard (ISO/IEC 9899:2018): </li> +<ul> +<li> 7.12.4.4 The atan2 functions (p: 174) </li> +<li> 7.25 Type-generic math <tgmath.h> (p: 272-273) </li> +<li> F.10.1.4 The atan2 functions (p: 378) </li> +</ul> +<li> C11 standard (ISO/IEC 9899:2011): </li> +<ul> +<li> 7.12.4.4 The atan2 functions (p: 239) </li> +<li> 7.25 Type-generic math <tgmath.h> (p: 373-375) </li> +<li> F.10.1.4 The atan2 functions (p: 519) </li> +</ul> +<li> C99 standard (ISO/IEC 9899:1999): </li> +<ul> +<li> 7.12.4.4 The atan2 functions (p: 219) </li> +<li> 7.22 Type-generic math <tgmath.h> (p: 335-337) </li> +<li> F.9.1.4 The atan2 functions (p: 456) </li> +</ul> +<li> C89/C90 standard (ISO/IEC 9899:1990): </li> +<ul><li> 4.5.2.4 The atan2 function </li></ul> +</ul> <h3 id="See_also"> See also</h3> <table class="t-dsc-begin"> <tr class="t-dsc"> <td> <div><a href="asin" title="c/numeric/math/asin"> <span class="t-lines"><span>asin</span><span>asinf</span><span>asinl</span></span></a></div> +<div><span class="t-lines"><span><span class="t-mark-rev t-since-c99">(C99)</span></span><span><span class="t-mark-rev t-since-c99">(C99)</span></span></span></div> </td> <td> computes arc sine (\({\small\arcsin{x} }\)arcsin(x)) <br> <span class="t-mark">(function)</span> </td> +</tr> <tr class="t-dsc"> <td> <div><a href="acos" title="c/numeric/math/acos"> <span class="t-lines"><span>acos</span><span>acosf</span><span>acosl</span></span></a></div> +<div><span class="t-lines"><span><span class="t-mark-rev t-since-c99">(C99)</span></span><span><span class="t-mark-rev t-since-c99">(C99)</span></span></span></div> </td> <td> computes arc cosine (\({\small\arccos{x} }\)arccos(x)) <br> <span class="t-mark">(function)</span> </td> +</tr> <tr class="t-dsc"> <td> <div><a href="atan" title="c/numeric/math/atan"> <span class="t-lines"><span>atan</span><span>atanf</span><span>atanl</span></span></a></div> +<div><span class="t-lines"><span><span class="t-mark-rev t-since-c99">(C99)</span></span><span><span class="t-mark-rev t-since-c99">(C99)</span></span></span></div> </td> <td> computes arc tangent (\({\small\arctan{x} }\)arctan(x)) <br> <span class="t-mark">(function)</span> </td> +</tr> <tr class="t-dsc"> <td> <div><a href="../complex/carg" title="c/numeric/complex/carg"> <span class="t-lines"><span>carg</span><span>cargf</span><span>cargl</span></span></a></div> +<div><span class="t-lines"><span><span class="t-mark-rev t-since-c99">(C99)</span></span><span><span class="t-mark-rev t-since-c99">(C99)</span></span><span><span class="t-mark-rev t-since-c99">(C99)</span></span></span></div> </td> <td> computes the phase angle of a complex number <br> <span class="t-mark">(function)</span> </td> +</tr> <tr class="t-dsc"> <td colspan="2"> <span><a href="https://en.cppreference.com/w/cpp/numeric/math/atan2" title="cpp/numeric/math/atan2">C++ documentation</a></span> for <code>atan2</code> </td> +</tr> </table> <div class="_attribution"> + <p class="_attribution-p"> + © cppreference.com<br>Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.<br> + <a href="https://en.cppreference.com/w/c/numeric/math/atan2" class="_attribution-link">https://en.cppreference.com/w/c/numeric/math/atan2</a> + </p> +</div> |
