1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
<h1>Enabling GPU access with Compose</h1>
<p>Compose services can define GPU device reservations if the Docker host contains such devices and the Docker Daemon is set accordingly. For this, make sure to install the <a href="https://docs.docker.com/config/containers/resource_constraints/#gpu">prerequisites</a> if you have not already done so.</p> <p>The examples in the following sections focus specifically on providing service containers access to GPU devices with Docker Compose. You can use either <code class="language-plaintext highlighter-rouge">docker-compose</code> or <code class="language-plaintext highlighter-rouge">docker compose</code> commands.</p> <h3 id="use-of-service-runtime-property-from-compose-v23-format-legacy">Use of service <code class="language-plaintext highlighter-rouge">runtime</code> property from Compose v2.3 format (legacy)</h3> <p>Docker Compose v1.27.0+ switched to using the Compose Specification schema which is a combination of all properties from 2.x and 3.x versions. This re-enabled the use of service properties as <a href="../compose-file/compose-file-v2/index#runtime">runtime</a> to provide GPU access to service containers. However, this does not allow to have control over specific properties of the GPU devices.</p> <div class="highlight"><pre class="highlight" data-language="">services:
test:
image: nvidia/cuda:10.2-base
command: nvidia-smi
runtime: nvidia
</pre></div> <h3 id="enabling-gpu-access-to-service-containers">Enabling GPU access to service containers</h3> <p>Docker Compose v1.28.0+ allows to define GPU reservations using the <a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#devices">device</a> structure defined in the Compose Specification. This provides more granular control over a GPU reservation as custom values can be set for the following device properties:</p> <ul> <li>
<a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#capabilities" target="_blank" rel="noopener" class="_">capabilities</a> - value specifies as a list of strings (eg. <code class="language-plaintext highlighter-rouge">capabilities: [gpu]</code>). You must set this field in the Compose file. Otherwise, it returns an error on service deployment.</li> <li>
<a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#count" target="_blank" rel="noopener" class="_">count</a> - value specified as an int or the value <code class="language-plaintext highlighter-rouge">all</code> representing the number of GPU devices that should be reserved ( providing the host holds that number of GPUs).</li> <li>
<a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#device_ids" target="_blank" rel="noopener" class="_">device_ids</a> - value specified as a list of strings representing GPU device IDs from the host. You can find the device ID in the output of <code class="language-plaintext highlighter-rouge">nvidia-smi</code> on the host.</li> <li>
<a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#driver" target="_blank" rel="noopener" class="_">driver</a> - value specified as a string (eg. <code class="language-plaintext highlighter-rouge">driver: 'nvidia'</code>)</li> <li>
<a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#options" target="_blank" rel="noopener" class="_">options</a> - key-value pairs representing driver specific options.</li> </ul> <blockquote> <p><strong>Note</strong></p> <p>You must set the <code class="language-plaintext highlighter-rouge">capabilities</code> field. Otherwise, it returns an error on service deployment.</p> <p><code class="language-plaintext highlighter-rouge">count</code> and <code class="language-plaintext highlighter-rouge">device_ids</code> are mutually exclusive. You must only define one field at a time.</p> </blockquote> <p>For more information on these properties, see the <code class="language-plaintext highlighter-rouge">deploy</code> section in the <a href="https://github.com/compose-spec/compose-spec/blob/master/deploy/#devices" target="_blank" rel="noopener" class="_">Compose Specification</a>.</p> <p>Example of a Compose file for running a service with access to 1 GPU device:</p> <div class="highlight"><pre class="highlight" data-language="">services:
test:
image: nvidia/cuda:10.2-base
command: nvidia-smi
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
</pre></div> <p>Run with Docker Compose:</p> <div class="highlight"><pre class="highlight" data-language="">$ docker-compose up
Creating network "gpu_default" with the default driver
Creating gpu_test_1 ... done
Attaching to gpu_test_1
test_1 | +-----------------------------------------------------------------------------+
test_1 | | NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.1 |
test_1 | |-------------------------------+----------------------+----------------------+
test_1 | | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
test_1 | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
test_1 | | | | MIG M. |
test_1 | |===============================+======================+======================|
test_1 | | 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
test_1 | | N/A 23C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
test_1 | | | | N/A |
test_1 | +-------------------------------+----------------------+----------------------+
test_1 |
test_1 | +-----------------------------------------------------------------------------+
test_1 | | Processes: |
test_1 | | GPU GI CI PID Type Process name GPU Memory |
test_1 | | ID ID Usage |
test_1 | |=============================================================================|
test_1 | | No running processes found |
test_1 | +-----------------------------------------------------------------------------+
gpu_test_1 exited with code 0
</pre></div> <p>If no <code class="language-plaintext highlighter-rouge">count</code> or <code class="language-plaintext highlighter-rouge">device_ids</code> are set, all GPUs available on the host are going to be used by default.</p> <div class="highlight"><pre class="highlight" data-language="">services:
test:
image: tensorflow/tensorflow:latest-gpu
command: python -c "import tensorflow as tf;tf.test.gpu_device_name()"
deploy:
resources:
reservations:
devices:
- capabilities: [gpu]
</pre></div> <div class="highlight"><pre class="highlight" data-language="">$ docker-compose up
Creating network "gpu_default" with the default driver
Creating gpu_test_1 ... done
Attaching to gpu_test_1
test_1 | I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
.....
test_1 | I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402]
Created TensorFlow device (/device:GPU:0 with 13970 MB memory) -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:00:1e.0, compute capability: 7.5)
test_1 | /device:GPU:0
gpu_test_1 exited with code 0
</pre></div> <p>On machines hosting multiple GPUs, <code class="language-plaintext highlighter-rouge">device_ids</code> field can be set to target specific GPU devices and <code class="language-plaintext highlighter-rouge">count</code> can be used to limit the number of GPU devices assigned to a service container. If <code class="language-plaintext highlighter-rouge">count</code> exceeds the number of available GPUs on the host, the deployment will error out.</p> <div class="highlight"><pre class="highlight" data-language="">$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1B.0 Off | 0 |
| N/A 72C P8 12W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla T4 On | 00000000:00:1C.0 Off | 0 |
| N/A 67C P8 11W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 2 Tesla T4 On | 00000000:00:1D.0 Off | 0 |
| N/A 74C P8 12W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 3 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 62C P8 11W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
</pre></div> <p>To enable access only to GPU-0 and GPU-3 devices:</p> <div class="highlight"><pre class="highlight" data-language="">services:
test:
image: tensorflow/tensorflow:latest-gpu
command: python -c "import tensorflow as tf;tf.test.gpu_device_name()"
deploy:
resources:
reservations:
devices:
- driver: nvidia
device_ids: ['0', '3']
capabilities: [gpu]
</pre></div> <div class="highlight"><pre class="highlight" data-language="">$ docker-compose up
...
Created TensorFlow device (/device:GPU:0 with 13970 MB memory -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:00:1b.0, compute capability: 7.5)
...
Created TensorFlow device (/device:GPU:1 with 13970 MB memory) -> physical GPU (device: 1, name: Tesla T4, pci bus id: 0000:00:1e.0, compute capability: 7.5)
...
gpu_test_1 exited with code 0
</pre></div>
<p><a href="https://docs.docker.com/search/?q=documentation">documentation</a>, <a href="https://docs.docker.com/search/?q=docs">docs</a>, <a href="https://docs.docker.com/search/?q=docker">docker</a>, <a href="https://docs.docker.com/search/?q=compose">compose</a>, <a href="https://docs.docker.com/search/?q=GPU%20access">GPU access</a>, <a href="https://docs.docker.com/search/?q=NVIDIA">NVIDIA</a>, <a href="https://docs.docker.com/search/?q=samples">samples</a></p>
<div class="_attribution">
<p class="_attribution-p">
© 2019 Docker, Inc.<br>Licensed under the Apache License, Version 2.0.<br>Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or other countries.<br>Docker, Inc. and other parties may also have trademark rights in other terms used herein.<br>
<a href="https://docs.docker.com/compose/gpu-support/" class="_attribution-link">https://docs.docker.com/compose/gpu-support/</a>
</p>
</div>
|