1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
<span id="operator-standard-operators-as-functions"></span><h1>operator — Standard operators as functions</h1> <p><strong>Source code:</strong> <a class="reference external" href="https://github.com/python/cpython/tree/3.12/Lib/operator.py">Lib/operator.py</a></p> <p>The <a class="reference internal" href="#module-operator" title="operator: Functions corresponding to the standard operators."><code>operator</code></a> module exports a set of efficient functions corresponding to the intrinsic operators of Python. For example, <code>operator.add(x, y)</code> is equivalent to the expression <code>x+y</code>. Many function names are those used for special methods, without the double underscores. For backward compatibility, many of these have a variant with the double underscores kept. The variants without the double underscores are preferred for clarity.</p> <p>The functions fall into categories that perform object comparisons, logical operations, mathematical operations and sequence operations.</p> <p>The object comparison functions are useful for all objects, and are named after the rich comparison operators they support:</p> <dl class="py function"> <dt class="sig sig-object py" id="operator.lt">
<code>operator.lt(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.le">
<code>operator.le(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.eq">
<code>operator.eq(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.ne">
<code>operator.ne(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.ge">
<code>operator.ge(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.gt">
<code>operator.gt(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__lt__">
<code>operator.__lt__(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__le__">
<code>operator.__le__(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__eq__">
<code>operator.__eq__(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ne__">
<code>operator.__ne__(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ge__">
<code>operator.__ge__(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__gt__">
<code>operator.__gt__(a, b)</code> </dt> <dd>
<p>Perform “rich comparisons” between <em>a</em> and <em>b</em>. Specifically, <code>lt(a, b)</code> is equivalent to <code>a < b</code>, <code>le(a, b)</code> is equivalent to <code>a <= b</code>, <code>eq(a,
b)</code> is equivalent to <code>a == b</code>, <code>ne(a, b)</code> is equivalent to <code>a != b</code>, <code>gt(a, b)</code> is equivalent to <code>a > b</code> and <code>ge(a, b)</code> is equivalent to <code>a
>= b</code>. Note that these functions can return any value, which may or may not be interpretable as a Boolean value. See <a class="reference internal" href="../reference/expressions#comparisons"><span class="std std-ref">Comparisons</span></a> for more information about rich comparisons.</p> </dd>
</dl> <p>The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean operations:</p> <dl class="py function"> <dt class="sig sig-object py" id="operator.not_">
<code>operator.not_(obj)</code> </dt> <dt class="sig sig-object py" id="operator.__not__">
<code>operator.__not__(obj)</code> </dt> <dd>
<p>Return the outcome of <a class="reference internal" href="../reference/expressions#not"><code>not</code></a> <em>obj</em>. (Note that there is no <code>__not__()</code> method for object instances; only the interpreter core defines this operation. The result is affected by the <a class="reference internal" href="../reference/datamodel#object.__bool__" title="object.__bool__"><code>__bool__()</code></a> and <a class="reference internal" href="../reference/datamodel#object.__len__" title="object.__len__"><code>__len__()</code></a> methods.)</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.truth">
<code>operator.truth(obj)</code> </dt> <dd>
<p>Return <a class="reference internal" href="constants#True" title="True"><code>True</code></a> if <em>obj</em> is true, and <a class="reference internal" href="constants#False" title="False"><code>False</code></a> otherwise. This is equivalent to using the <a class="reference internal" href="functions#bool" title="bool"><code>bool</code></a> constructor.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.is_">
<code>operator.is_(a, b)</code> </dt> <dd>
<p>Return <code>a is b</code>. Tests object identity.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.is_not">
<code>operator.is_not(a, b)</code> </dt> <dd>
<p>Return <code>a is not b</code>. Tests object identity.</p> </dd>
</dl> <p>The mathematical and bitwise operations are the most numerous:</p> <dl class="py function"> <dt class="sig sig-object py" id="operator.abs">
<code>operator.abs(obj)</code> </dt> <dt class="sig sig-object py" id="operator.__abs__">
<code>operator.__abs__(obj)</code> </dt> <dd>
<p>Return the absolute value of <em>obj</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.add">
<code>operator.add(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__add__">
<code>operator.__add__(a, b)</code> </dt> <dd>
<p>Return <code>a + b</code>, for <em>a</em> and <em>b</em> numbers.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.and_">
<code>operator.and_(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__and__">
<code>operator.__and__(a, b)</code> </dt> <dd>
<p>Return the bitwise and of <em>a</em> and <em>b</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.floordiv">
<code>operator.floordiv(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__floordiv__">
<code>operator.__floordiv__(a, b)</code> </dt> <dd>
<p>Return <code>a // b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.index">
<code>operator.index(a)</code> </dt> <dt class="sig sig-object py" id="operator.__index__">
<code>operator.__index__(a)</code> </dt> <dd>
<p>Return <em>a</em> converted to an integer. Equivalent to <code>a.__index__()</code>.</p> <div class="versionchanged"> <p><span class="versionmodified changed">Changed in version 3.10: </span>The result always has exact type <a class="reference internal" href="functions#int" title="int"><code>int</code></a>. Previously, the result could have been an instance of a subclass of <code>int</code>.</p> </div> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.inv">
<code>operator.inv(obj)</code> </dt> <dt class="sig sig-object py" id="operator.invert">
<code>operator.invert(obj)</code> </dt> <dt class="sig sig-object py" id="operator.__inv__">
<code>operator.__inv__(obj)</code> </dt> <dt class="sig sig-object py" id="operator.__invert__">
<code>operator.__invert__(obj)</code> </dt> <dd>
<p>Return the bitwise inverse of the number <em>obj</em>. This is equivalent to <code>~obj</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.lshift">
<code>operator.lshift(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__lshift__">
<code>operator.__lshift__(a, b)</code> </dt> <dd>
<p>Return <em>a</em> shifted left by <em>b</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.mod">
<code>operator.mod(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__mod__">
<code>operator.__mod__(a, b)</code> </dt> <dd>
<p>Return <code>a % b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.mul">
<code>operator.mul(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__mul__">
<code>operator.__mul__(a, b)</code> </dt> <dd>
<p>Return <code>a * b</code>, for <em>a</em> and <em>b</em> numbers.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.matmul">
<code>operator.matmul(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__matmul__">
<code>operator.__matmul__(a, b)</code> </dt> <dd>
<p>Return <code>a @ b</code>.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 3.5.</span></p> </div> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.neg">
<code>operator.neg(obj)</code> </dt> <dt class="sig sig-object py" id="operator.__neg__">
<code>operator.__neg__(obj)</code> </dt> <dd>
<p>Return <em>obj</em> negated (<code>-obj</code>).</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.or_">
<code>operator.or_(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__or__">
<code>operator.__or__(a, b)</code> </dt> <dd>
<p>Return the bitwise or of <em>a</em> and <em>b</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.pos">
<code>operator.pos(obj)</code> </dt> <dt class="sig sig-object py" id="operator.__pos__">
<code>operator.__pos__(obj)</code> </dt> <dd>
<p>Return <em>obj</em> positive (<code>+obj</code>).</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.pow">
<code>operator.pow(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__pow__">
<code>operator.__pow__(a, b)</code> </dt> <dd>
<p>Return <code>a ** b</code>, for <em>a</em> and <em>b</em> numbers.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.rshift">
<code>operator.rshift(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__rshift__">
<code>operator.__rshift__(a, b)</code> </dt> <dd>
<p>Return <em>a</em> shifted right by <em>b</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.sub">
<code>operator.sub(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__sub__">
<code>operator.__sub__(a, b)</code> </dt> <dd>
<p>Return <code>a - b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.truediv">
<code>operator.truediv(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__truediv__">
<code>operator.__truediv__(a, b)</code> </dt> <dd>
<p>Return <code>a / b</code> where 2/3 is .66 rather than 0. This is also known as “true” division.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.xor">
<code>operator.xor(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__xor__">
<code>operator.__xor__(a, b)</code> </dt> <dd>
<p>Return the bitwise exclusive or of <em>a</em> and <em>b</em>.</p> </dd>
</dl> <p>Operations which work with sequences (some of them with mappings too) include:</p> <dl class="py function"> <dt class="sig sig-object py" id="operator.concat">
<code>operator.concat(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__concat__">
<code>operator.__concat__(a, b)</code> </dt> <dd>
<p>Return <code>a + b</code> for <em>a</em> and <em>b</em> sequences.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.contains">
<code>operator.contains(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__contains__">
<code>operator.__contains__(a, b)</code> </dt> <dd>
<p>Return the outcome of the test <code>b in a</code>. Note the reversed operands.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.countOf">
<code>operator.countOf(a, b)</code> </dt> <dd>
<p>Return the number of occurrences of <em>b</em> in <em>a</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.delitem">
<code>operator.delitem(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__delitem__">
<code>operator.__delitem__(a, b)</code> </dt> <dd>
<p>Remove the value of <em>a</em> at index <em>b</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.getitem">
<code>operator.getitem(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__getitem__">
<code>operator.__getitem__(a, b)</code> </dt> <dd>
<p>Return the value of <em>a</em> at index <em>b</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.indexOf">
<code>operator.indexOf(a, b)</code> </dt> <dd>
<p>Return the index of the first of occurrence of <em>b</em> in <em>a</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.setitem">
<code>operator.setitem(a, b, c)</code> </dt> <dt class="sig sig-object py" id="operator.__setitem__">
<code>operator.__setitem__(a, b, c)</code> </dt> <dd>
<p>Set the value of <em>a</em> at index <em>b</em> to <em>c</em>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.length_hint">
<code>operator.length_hint(obj, default=0)</code> </dt> <dd>
<p>Return an estimated length for the object <em>obj</em>. First try to return its actual length, then an estimate using <a class="reference internal" href="../reference/datamodel#object.__length_hint__" title="object.__length_hint__"><code>object.__length_hint__()</code></a>, and finally return the default value.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 3.4.</span></p> </div> </dd>
</dl> <p>The following operation works with callables:</p> <dl class="py function"> <dt class="sig sig-object py" id="operator.call">
<code>operator.call(obj, /, *args, **kwargs)</code> </dt> <dt class="sig sig-object py" id="operator.__call__">
<code>operator.__call__(obj, /, *args, **kwargs)</code> </dt> <dd>
<p>Return <code>obj(*args, **kwargs)</code>.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 3.11.</span></p> </div> </dd>
</dl> <p>The <a class="reference internal" href="#module-operator" title="operator: Functions corresponding to the standard operators."><code>operator</code></a> module also defines tools for generalized attribute and item lookups. These are useful for making fast field extractors as arguments for <a class="reference internal" href="functions#map" title="map"><code>map()</code></a>, <a class="reference internal" href="functions#sorted" title="sorted"><code>sorted()</code></a>, <a class="reference internal" href="itertools#itertools.groupby" title="itertools.groupby"><code>itertools.groupby()</code></a>, or other functions that expect a function argument.</p> <dl class="py function"> <dt class="sig sig-object py" id="operator.attrgetter">
<code>operator.attrgetter(attr)</code> </dt> <dt class="sig sig-object py"> <span class="sig-prename descclassname">operator.</span><span class="sig-name descname">attrgetter</span><span class="sig-paren">(</span><em class="sig-param"><span class="o">*</span><span class="n">attrs</span></em><span class="sig-paren">)</span>
</dt> <dd>
<p>Return a callable object that fetches <em>attr</em> from its operand. If more than one attribute is requested, returns a tuple of attributes. The attribute names can also contain dots. For example:</p> <ul class="simple"> <li>After <code>f = attrgetter('name')</code>, the call <code>f(b)</code> returns <code>b.name</code>.</li> <li>After <code>f = attrgetter('name', 'date')</code>, the call <code>f(b)</code> returns <code>(b.name, b.date)</code>.</li> <li>After <code>f = attrgetter('name.first', 'name.last')</code>, the call <code>f(b)</code> returns <code>(b.name.first, b.name.last)</code>.</li> </ul> <p>Equivalent to:</p> <pre data-language="python">def attrgetter(*items):
if any(not isinstance(item, str) for item in items):
raise TypeError('attribute name must be a string')
if len(items) == 1:
attr = items[0]
def g(obj):
return resolve_attr(obj, attr)
else:
def g(obj):
return tuple(resolve_attr(obj, attr) for attr in items)
return g
def resolve_attr(obj, attr):
for name in attr.split("."):
obj = getattr(obj, name)
return obj
</pre> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.itemgetter">
<code>operator.itemgetter(item)</code> </dt> <dt class="sig sig-object py"> <span class="sig-prename descclassname">operator.</span><span class="sig-name descname">itemgetter</span><span class="sig-paren">(</span><em class="sig-param"><span class="o">*</span><span class="n">items</span></em><span class="sig-paren">)</span>
</dt> <dd>
<p>Return a callable object that fetches <em>item</em> from its operand using the operand’s <a class="reference internal" href="../reference/datamodel#object.__getitem__" title="object.__getitem__"><code>__getitem__()</code></a> method. If multiple items are specified, returns a tuple of lookup values. For example:</p> <ul class="simple"> <li>After <code>f = itemgetter(2)</code>, the call <code>f(r)</code> returns <code>r[2]</code>.</li> <li>After <code>g = itemgetter(2, 5, 3)</code>, the call <code>g(r)</code> returns <code>(r[2], r[5], r[3])</code>.</li> </ul> <p>Equivalent to:</p> <pre data-language="python">def itemgetter(*items):
if len(items) == 1:
item = items[0]
def g(obj):
return obj[item]
else:
def g(obj):
return tuple(obj[item] for item in items)
return g
</pre> <p>The items can be any type accepted by the operand’s <a class="reference internal" href="../reference/datamodel#object.__getitem__" title="object.__getitem__"><code>__getitem__()</code></a> method. Dictionaries accept any <a class="reference internal" href="../glossary#term-hashable"><span class="xref std std-term">hashable</span></a> value. Lists, tuples, and strings accept an index or a slice:</p> <pre data-language="python">>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1, 3, 5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2, None))('ABCDEFG')
'CDEFG'
>>> soldier = dict(rank='captain', name='dotterbart')
>>> itemgetter('rank')(soldier)
'captain'
</pre> <p>Example of using <a class="reference internal" href="#operator.itemgetter" title="operator.itemgetter"><code>itemgetter()</code></a> to retrieve specific fields from a tuple record:</p> <pre data-language="python">>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> list(map(getcount, inventory))
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]
</pre> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.methodcaller">
<code>operator.methodcaller(name, /, *args, **kwargs)</code> </dt> <dd>
<p>Return a callable object that calls the method <em>name</em> on its operand. If additional arguments and/or keyword arguments are given, they will be given to the method as well. For example:</p> <ul class="simple"> <li>After <code>f = methodcaller('name')</code>, the call <code>f(b)</code> returns <code>b.name()</code>.</li> <li>After <code>f = methodcaller('name', 'foo', bar=1)</code>, the call <code>f(b)</code> returns <code>b.name('foo', bar=1)</code>.</li> </ul> <p>Equivalent to:</p> <pre data-language="python">def methodcaller(name, /, *args, **kwargs):
def caller(obj):
return getattr(obj, name)(*args, **kwargs)
return caller
</pre> </dd>
</dl> <section id="mapping-operators-to-functions"> <span id="operator-map"></span><h2>Mapping Operators to Functions</h2> <p>This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the <a class="reference internal" href="#module-operator" title="operator: Functions corresponding to the standard operators."><code>operator</code></a> module.</p> <table class="docutils align-default"> <thead> <tr>
<th class="head"><p>Operation</p></th> <th class="head"><p>Syntax</p></th> <th class="head"><p>Function</p></th> </tr> </thead> <tr>
<td><p>Addition</p></td> <td><p><code>a + b</code></p></td> <td><p><code>add(a, b)</code></p></td> </tr> <tr>
<td><p>Concatenation</p></td> <td><p><code>seq1 + seq2</code></p></td> <td><p><code>concat(seq1, seq2)</code></p></td> </tr> <tr>
<td><p>Containment Test</p></td> <td><p><code>obj in seq</code></p></td> <td><p><code>contains(seq, obj)</code></p></td> </tr> <tr>
<td><p>Division</p></td> <td><p><code>a / b</code></p></td> <td><p><code>truediv(a, b)</code></p></td> </tr> <tr>
<td><p>Division</p></td> <td><p><code>a // b</code></p></td> <td><p><code>floordiv(a, b)</code></p></td> </tr> <tr>
<td><p>Bitwise And</p></td> <td><p><code>a & b</code></p></td> <td><p><code>and_(a, b)</code></p></td> </tr> <tr>
<td><p>Bitwise Exclusive Or</p></td> <td><p><code>a ^ b</code></p></td> <td><p><code>xor(a, b)</code></p></td> </tr> <tr>
<td><p>Bitwise Inversion</p></td> <td><p><code>~ a</code></p></td> <td><p><code>invert(a)</code></p></td> </tr> <tr>
<td><p>Bitwise Or</p></td> <td><p><code>a | b</code></p></td> <td><p><code>or_(a, b)</code></p></td> </tr> <tr>
<td><p>Exponentiation</p></td> <td><p><code>a ** b</code></p></td> <td><p><code>pow(a, b)</code></p></td> </tr> <tr>
<td><p>Identity</p></td> <td><p><code>a is b</code></p></td> <td><p><code>is_(a, b)</code></p></td> </tr> <tr>
<td><p>Identity</p></td> <td><p><code>a is not b</code></p></td> <td><p><code>is_not(a, b)</code></p></td> </tr> <tr>
<td><p>Indexed Assignment</p></td> <td><p><code>obj[k] = v</code></p></td> <td><p><code>setitem(obj, k, v)</code></p></td> </tr> <tr>
<td><p>Indexed Deletion</p></td> <td><p><code>del obj[k]</code></p></td> <td><p><code>delitem(obj, k)</code></p></td> </tr> <tr>
<td><p>Indexing</p></td> <td><p><code>obj[k]</code></p></td> <td><p><code>getitem(obj, k)</code></p></td> </tr> <tr>
<td><p>Left Shift</p></td> <td><p><code>a << b</code></p></td> <td><p><code>lshift(a, b)</code></p></td> </tr> <tr>
<td><p>Modulo</p></td> <td><p><code>a % b</code></p></td> <td><p><code>mod(a, b)</code></p></td> </tr> <tr>
<td><p>Multiplication</p></td> <td><p><code>a * b</code></p></td> <td><p><code>mul(a, b)</code></p></td> </tr> <tr>
<td><p>Matrix Multiplication</p></td> <td><p><code>a @ b</code></p></td> <td><p><code>matmul(a, b)</code></p></td> </tr> <tr>
<td><p>Negation (Arithmetic)</p></td> <td><p><code>- a</code></p></td> <td><p><code>neg(a)</code></p></td> </tr> <tr>
<td><p>Negation (Logical)</p></td> <td><p><code>not a</code></p></td> <td><p><code>not_(a)</code></p></td> </tr> <tr>
<td><p>Positive</p></td> <td><p><code>+ a</code></p></td> <td><p><code>pos(a)</code></p></td> </tr> <tr>
<td><p>Right Shift</p></td> <td><p><code>a >> b</code></p></td> <td><p><code>rshift(a, b)</code></p></td> </tr> <tr>
<td><p>Slice Assignment</p></td> <td><p><code>seq[i:j] = values</code></p></td> <td><p><code>setitem(seq, slice(i, j), values)</code></p></td> </tr> <tr>
<td><p>Slice Deletion</p></td> <td><p><code>del seq[i:j]</code></p></td> <td><p><code>delitem(seq, slice(i, j))</code></p></td> </tr> <tr>
<td><p>Slicing</p></td> <td><p><code>seq[i:j]</code></p></td> <td><p><code>getitem(seq, slice(i, j))</code></p></td> </tr> <tr>
<td><p>String Formatting</p></td> <td><p><code>s % obj</code></p></td> <td><p><code>mod(s, obj)</code></p></td> </tr> <tr>
<td><p>Subtraction</p></td> <td><p><code>a - b</code></p></td> <td><p><code>sub(a, b)</code></p></td> </tr> <tr>
<td><p>Truth Test</p></td> <td><p><code>obj</code></p></td> <td><p><code>truth(obj)</code></p></td> </tr> <tr>
<td><p>Ordering</p></td> <td><p><code>a < b</code></p></td> <td><p><code>lt(a, b)</code></p></td> </tr> <tr>
<td><p>Ordering</p></td> <td><p><code>a <= b</code></p></td> <td><p><code>le(a, b)</code></p></td> </tr> <tr>
<td><p>Equality</p></td> <td><p><code>a == b</code></p></td> <td><p><code>eq(a, b)</code></p></td> </tr> <tr>
<td><p>Difference</p></td> <td><p><code>a != b</code></p></td> <td><p><code>ne(a, b)</code></p></td> </tr> <tr>
<td><p>Ordering</p></td> <td><p><code>a >= b</code></p></td> <td><p><code>ge(a, b)</code></p></td> </tr> <tr>
<td><p>Ordering</p></td> <td><p><code>a > b</code></p></td> <td><p><code>gt(a, b)</code></p></td> </tr> </table> </section> <section id="in-place-operators"> <h2>In-place Operators</h2> <p>Many operations have an “in-place” version. Listed below are functions providing a more primitive access to in-place operators than the usual syntax does; for example, the <a class="reference internal" href="../glossary#term-statement"><span class="xref std std-term">statement</span></a> <code>x += y</code> is equivalent to <code>x = operator.iadd(x, y)</code>. Another way to put it is to say that <code>z = operator.iadd(x, y)</code> is equivalent to the compound statement <code>z = x; z += y</code>.</p> <p>In those examples, note that when an in-place method is called, the computation and assignment are performed in two separate steps. The in-place functions listed below only do the first step, calling the in-place method. The second step, assignment, is not handled.</p> <p>For immutable targets such as strings, numbers, and tuples, the updated value is computed, but not assigned back to the input variable:</p> <pre data-language="python">>>> a = 'hello'
>>> iadd(a, ' world')
'hello world'
>>> a
'hello'
</pre> <p>For mutable targets such as lists and dictionaries, the in-place method will perform the update, so no subsequent assignment is necessary:</p> <pre data-language="python">>>> s = ['h', 'e', 'l', 'l', 'o']
>>> iadd(s, [' ', 'w', 'o', 'r', 'l', 'd'])
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
>>> s
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
</pre> <dl class="py function"> <dt class="sig sig-object py" id="operator.iadd">
<code>operator.iadd(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__iadd__">
<code>operator.__iadd__(a, b)</code> </dt> <dd>
<p><code>a = iadd(a, b)</code> is equivalent to <code>a += b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.iand">
<code>operator.iand(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__iand__">
<code>operator.__iand__(a, b)</code> </dt> <dd>
<p><code>a = iand(a, b)</code> is equivalent to <code>a &= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.iconcat">
<code>operator.iconcat(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__iconcat__">
<code>operator.__iconcat__(a, b)</code> </dt> <dd>
<p><code>a = iconcat(a, b)</code> is equivalent to <code>a += b</code> for <em>a</em> and <em>b</em> sequences.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.ifloordiv">
<code>operator.ifloordiv(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ifloordiv__">
<code>operator.__ifloordiv__(a, b)</code> </dt> <dd>
<p><code>a = ifloordiv(a, b)</code> is equivalent to <code>a //= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.ilshift">
<code>operator.ilshift(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ilshift__">
<code>operator.__ilshift__(a, b)</code> </dt> <dd>
<p><code>a = ilshift(a, b)</code> is equivalent to <code>a <<= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.imod">
<code>operator.imod(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__imod__">
<code>operator.__imod__(a, b)</code> </dt> <dd>
<p><code>a = imod(a, b)</code> is equivalent to <code>a %= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.imul">
<code>operator.imul(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__imul__">
<code>operator.__imul__(a, b)</code> </dt> <dd>
<p><code>a = imul(a, b)</code> is equivalent to <code>a *= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.imatmul">
<code>operator.imatmul(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__imatmul__">
<code>operator.__imatmul__(a, b)</code> </dt> <dd>
<p><code>a = imatmul(a, b)</code> is equivalent to <code>a @= b</code>.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 3.5.</span></p> </div> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.ior">
<code>operator.ior(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ior__">
<code>operator.__ior__(a, b)</code> </dt> <dd>
<p><code>a = ior(a, b)</code> is equivalent to <code>a |= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.ipow">
<code>operator.ipow(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ipow__">
<code>operator.__ipow__(a, b)</code> </dt> <dd>
<p><code>a = ipow(a, b)</code> is equivalent to <code>a **= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.irshift">
<code>operator.irshift(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__irshift__">
<code>operator.__irshift__(a, b)</code> </dt> <dd>
<p><code>a = irshift(a, b)</code> is equivalent to <code>a >>= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.isub">
<code>operator.isub(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__isub__">
<code>operator.__isub__(a, b)</code> </dt> <dd>
<p><code>a = isub(a, b)</code> is equivalent to <code>a -= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.itruediv">
<code>operator.itruediv(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__itruediv__">
<code>operator.__itruediv__(a, b)</code> </dt> <dd>
<p><code>a = itruediv(a, b)</code> is equivalent to <code>a /= b</code>.</p> </dd>
</dl> <dl class="py function"> <dt class="sig sig-object py" id="operator.ixor">
<code>operator.ixor(a, b)</code> </dt> <dt class="sig sig-object py" id="operator.__ixor__">
<code>operator.__ixor__(a, b)</code> </dt> <dd>
<p><code>a = ixor(a, b)</code> is equivalent to <code>a ^= b</code>.</p> </dd>
</dl> </section> <div class="_attribution">
<p class="_attribution-p">
© 2001–2023 Python Software Foundation<br>Licensed under the PSF License.<br>
<a href="https://docs.python.org/3.12/library/operator.html" class="_attribution-link">https://docs.python.org/3.12/library/operator.html</a>
</p>
</div>
|